
Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

System Architecture

The Check Your Bias (CYB) system architecture is split into four major modules at a high level,

the modules are:

1. Firebase

(a) Responsible for storing the actual data.

2. Data Model

(a) Responsible for providing an interface between the Firebase database its client applica-

tions in the form of concrete data models.

3. Mobile Client

(a) Responsible for providing a user interface for users to interact with the system. Imple-

mented with React components.

4. Crowd Source Approval Utility

(a) Responsible for approving or denying crowd sourced content uploaded to the system

through the Mobile Client

We will now describe each module in detail.

Firebase

Firebase provides one key features we will use for CYB: data storage. We will use the data storage

feature to store all the CYB data in relational form according to the UML diagram provided in

this document. In place of a full server, we will utilize Firebase to fetch data via our Data Model

module. We can then implement functionality to pre-process our data before returning it to the

client application.

From a user’s perspective, this module is hidden other than the views we provide to the data.

Data Model

The data models are responsible for abstracting access to the Firebase database in a unit-testable

way. They are a direct reflection of the data UML diagrams provided in this document. The data

models are then used by the Mobile Client and Crowd Source Approval Utility to access and write

to the Firebase database. From a technical perspective, this module will consist of a group of

TypeScript classes which encapsulate the raw data provided by fetching the appropriate data from

the Firebase database. The data model also will handle any preprocessing of the data into more

application friendly forms. For example, the data model can produce a ranking list of candidates

from processing the raw Firebase data.

Again, from a user’s this part of the system is hidden. The Mobile Client will interact with this

module directly to produce the views the user will experience.

1



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Mobile Client

The mobile client is a user centric module. The mobile client, written in web technologies, will

provide a view to the user to interact with our system. From a technical perspective, this module

will be implemented as a collection of React components which are fed data through the Data

Model module by utilizes the various TypeScript classes provided by it.

From a users perspective, the mobile client will reside as a native phone application on iOS and

Android. The native application, generated by Phonegap, will consist of a webview that displays the

application generated by the composition of React components. The user will be able to contribute

crowd data, and participate in the CYB system via this module.

Crowdsource Approval Utility

The Crowd Source Approval Utility (CSAU) will provide administrative access to the Firebase

database to approve or deny submissions to the crowd source data set. From a technical perspective

the CSAU will be a NodeJS command-line utility which will interact, via the Data Model module,

with the Firebase database. From a users perspective (the user in this case is an administrator), the

command-line utility will allow listing pending-approval submissions and approved submissions. It

will also allow administrators to deny and approve submissions.

Interfaces Between Modules

The major interfaces of CYB generally exist with respect to accessing data. The interfaces are as

follows:

Mobile Client & Data Model

The Mobile Client module will interact with the Data Model module to obtain data to display to the

user. It will also interact with the Data Model to store user preferences, political profile additions,

and crowd sourced data. This interaction from a technical perspective will involve constructing

TypeScript classes exposed by the Data Model module. These classes can be constructed by JSON

object, or by a simple constructor. Once constructed, the mobile client can use the model to fetch

or store data. The Data Model will then take these actions and interact with the Firebase database.

Crowdsource Approval Utility & Data Model

Similar to how the Mobile Client functions, the Crowd Source Approval Utility will interact with

the Data Model module to obtain and change approval queues in the Firebase database. Since

the Crowd Source Approval Utility is also written in JavaScript (similar to the Mobile Client), the

interface will similarly consist of constructing TypeScript classes, and invoking interfaces to fetch

and save data.

2



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Firebase & Data Model

Finally, there will be an interface between the Data Model and the Firebase database. The interface

will execute with HTTP REST requests which will fully specify the interactions between the models

and the database. For example, if storing a new user object, the Data Model module will use the

information specified by the clients of the Data Model (such as username), to generate and execute

a request to the Firebasee database for storage.

Alternative Designs

Facebook Login

Instead of using Facebook authentication in order to log in to CYB, we also considered building

out our own authentication system or using multiple systems such as Google+ alongside Facebook.

While using Facebook authentication makes building on the developers side significantly easier, it

also ensures security. It trades o↵ ease of access to existing Facebook users for the pain of signing

up for Facebook and the loss of a potential user who is vehemently against Facebook. We chose to

use Facebook over a multi-system login step because it opens up possibilities for the future in case

we want to further personalize CYB with some of Facebooks social functionalities.

Firebase Vs. Parse

We strongly considered using Parse over Firebase. While they o↵er similar features, Parse allows

for everything we need but is also backed by Facebook which we chose as our login feature so the

integration is likely better. Firebase o↵ers real time data as its main benefit over Parse but this

is a feature that is most likely unimportant for the purposes of CYB. However, it was recently

announced that Parse would be discontinued at the beginning of next year. We chose to use

Firebase because it o↵ers similar features to Parse but the skills and knowledge we would develop

while using it would persist and so we would not have to migrate platforms if the project continued

further.

Data Storage

For each user:

– Facebook Id

– Issues they have submitted

– Issues they have responded to

For each candidate:

– A unique Id

– Their name

– A source for users to get more information about this candidate

For each issue:

– A unique Id

– The issue content, i.e. a quote from a candidate

– A source

3



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

– Candidate opinions where applicable

The schemas of the objects we will be using (represented in Orderly format), which reflect how our

objects will be stored, are as follows:

User {

integer userId;

string email;

string firstName;

string lastName;

integer age;

integer gender;

boolean admin;

boolean hasSeenHelpText;

array {

integer;

} submittedIssueIds;

map { integer => integer } ratedIssues;

map { integer => integer } categoryWeights;

}

Category {

integer categoryId;

string categoryName;

string description;

array {

integer;

} issues;

}

Issue {

integer issueId;

string mainText;

array {

string;

} sources;

map { integer => integer } candidates;

array {

integer;

} category;

array {

integer;

} submitters;

integer seenByCount;

integer skipCount;

map { integer => integer } ratings;

integer flagCount;

boolean approved;

}

Candidate {

integer candidateId;

string name;

string affiliatedParty;

map { integer => integer } issues;

string website;

}

4



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Design Assumptions

We were very careful in our system architecture design to limit places where we are making general

assumptions or constricting opportunities for the system to adjust and react to new factors. For

example, we carefully designed the system such that it is not dependent on the setting for elections

presented in the application. While we mainly had presidential elections in mind when thinking

about the design, we left it flexible enough to support other election cycles in the federal level, as

well as the state, county, city, and local jurisdictions. In fact, our system is not even reliant on

the elections taking place in the United States, or on elections being political at all. In fact, the

same exact system architecture design will serve us well when comparing candidates for a 5th grade

hallway monitor in Finland! We did however, make a few small assumptions in other areas. One

of those concerns the behavior of our users. We are assuming that every user of the platform will

behave in a similar fashion by voting on their opinion on issues to some extent. If users chose not to

vote at all, then our platform will not adjust well and not have enough data available to provide the

user with new information or an informed decision on their possible political a�liations. Secondly,

we are assuming that users have informed opinions and preexisting knowledge about issues that

may come up in the election discussion. We currently do not have any plans to implement features

that will help explain the significance or meaning of the issues presented to the users.

Diagrams

5



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

6



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Sequence Diagrams

User Voting

7



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Crowdsourcing

8



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Process

Risk Assessment

1. Content

Likelihood: Medium

Impact: High

Summary / Evidence: Content is a major component of Check Your Bias and it is in-

credibly important that this information be both accurate and complete. The content will be

directly related to the overall quality of our application.

Overall Plan: We plan to review all content that is put into our app as a team in the

beginning. That means that before content can show up in the feed for users, it has to be

approved by admins who will check the accuracy and completeness.

Detection: This was discussed about, but all content will be moderated before it can show

up in a user’s feed.

Mitigation Plan: Should this occur, users can report something as incorrect with a few

simple taps when voting on a topic or issue.

2. Crowdsourcing

Likelihood: Medium

Impact: Medium

Summary / Evidence: Crowdsourcing will allow the product to grow significantly and

provide a platform for many people to share their knowledge and expertise in the topic, but

it also produces significant challenges. Content that users supply to the app must be vetted

and screened thoroughly and pass quality guidelines. It will be di�cult balancing the e↵ort

and e�ciency of undergoing this screening process.

Overall Plan: All content must be initially reviewed by moderators, but in order for this to

scale there must exist a limit to how much one can spend on a single topic before making a

decision.

Detection: Moderators will need to be careful that the time spent approving or disapproving

content is of high quality so that a short amount of time can be spent on each submission

while also insuring that only high quality content is approved.

Mitigation Plan: Should this fail to happen, then users will be able to flag content for

review (as discussed in the previous risk).

3. Content Creation

Likelihood: Medium

Impact: Medium

Summary / Evidence: A major feature of our end product is providing users the option to

answer a set of questions that will help the product guide them towards a candidate whose

opinions match their own. Since this process and criteria will at first be created manually by

us, the creators of the products, there is a risk that our bias or incomplete understanding of

the political situation will impact the quality of this initial survey and will thus degrade the

overall quality of the product.

Overall Plan: In addition to all content being approved by a set of moderators, each moder-

9



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

ator should carefully consider whether the submission is inherently bias towards a particular

candidate or viewpoint.

Detection: Detection can happen in 2 places: another moderator will catch it before it is

approved or a user will flag the content.

Mitigation Plan: If a moderator finds content to be inherently biased, then they may edit

the content to be better suited for the content feed.

4. Lack of Engagement

Likelihood: Low

Impact: High

Summary / Evidence: A user may come into our app and only answer a few questions and

then stopping. This does not give us enough evidence to make any conclusions about who

the user most closely relates to in terms of the candidates.

Overall Plan: We will display a message saying that there is not enough information yet to

make any conclusions about the user’s political views if the user tries to access the analysis

page.

Detection: This can be detected if the user tries to access his or her political profile page

before they have ranked enough topics or issues.

Mitigation Plan: The main way of mitigating this risk is to tell the user they must answer

X questions or topics before we have enough information to make a conclusion about their

political profile. If a user has already taken the time and e↵ort to download our application,

then it is likely that asking them to spend a few more minutes rating topics will not deter

them away from CYB. Unfortunately, it would be incredibly di�cult to make any conclusions

based on such little data.

5. Rated Content

Likelihood: Medium

Impact: Medium

Summary / Evidence: As a user rates content in his or her feed, it is likely that they

will encounter a category that is of not much importance to them. For example, if I have an

extreme bias against Trump and disagree on every single one of his viewpoints – then it is

highly unlikely for me to have my views changed (the main idea of CYB is to help educate

voters about their views and how they relate to the candidates’ views). If I rate a quote of

Trump’s that happens to be one of his main campaign points as “Highly Disagree”, then I

probably won’t agree with many of his other points.

Overall Plan: This can be mitigated by using a user’s vote on a topic as an indicator whether

he or she agrees with a candidate before the user’s political profile is made. The server can

then send topics to the user that help complete the profile rather than sending more topics

on someone or something that they do not care for.

Detection: Detection of this risk is a di�cult task. We can look at the likelihood of a user

voting “Highly Disagree” on a topic given that they also voted “Highly Disagree” on this

other topic and use this as a metric in determining whether or not to show them.

Mitigation Plan: Largely discussed above, we want to show users topics that help complete

our political profile of them. This means that we should have a diverse set of content that

can be utilized to help find the right topics to present to the user.

10



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Project Schedule

Team Goals for Front End Team Back End Team Full Stack Team

January 26th Learn React Learn Firebase Crowdsource Design

• Submit Software

Design Specification

Aaron - Modules

and Interfaces, UML

Todd - Doc. plan,

Database schema

Sonja - Schedule,

sequence diagram

• Submit slides for

design spec.

Roee - Test plan,

design assumptions

Riley - UML

diagram

Ryan - Risk analysis,

sequence diagram

• Build system

familiarity

Geo↵rey - Code

style guidelines

Nick Data storage,

alternative designs

February 2nd React Components
Typescript &

Firebase
Basic Crowdsourcing

• Product webpage Aaron - User profile Todd - User Sonja - Frontend

• 0 feature release Roee - Voting Riley - Issues Ryan - Backend

Geo↵rey - Analysis Nick - Candidate

- Category

February 9th User Interactions Test Backend Test Crowdsourcing

• Good progress Aaron - User profile Todd - User Sonja - Unit tests

Roee - Voting Riley - Issues Ryan - Unit tests

Geo↵rey - Analysis Nick - Candidate

- Category

February 16th Clean up UI Stretch Goals / Bugs V2.0 / Bugs

• Beta release
Aaron - Test voting

(front end)

Todd - Multiple

elections

Sonja - Data

de-duplication

Roee - Test analysis

(front end)

Riley - Advanced

analysis

Ryan - Data

aggregation

Geo↵rey - Test user

profile

Nick Share to

Facebook feature

February 23rd Stretch UI Features Stretch Features Focus Group Testing

• Feature complete

release

Aaron - Select

di↵erent elections
Todd - 1 user test Sonja - 1 user test

Roee - UI sharing to

Facebook
Riley - 1 user test Ryan - 1 user test

Geo↵rey - Data

visualization
Nick 1 user test

March 1st Bugs Bugs More Bugs

• Submit release

candidate

Aaron - User profile

bugs

Todd - User function

bugs / elections

Sonja - Crowd bugs,

general frontend

Roee - Voting /

Facebook bugs

Riley - Issue /

analysis bugs

Ryan - Crowd

aggregation bugs

Geo↵rey - Analysis

view bugs

Nick Category and

Facebook bugs

11



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Team Structure

Sonja is the Project Manager (PM) and her responsibility is to make sure the project stays on

schedule and that the team is getting the support they need to complete their tasks. Development

will be driven by the SCRUM methodology with short one-week sprints. Tasks will be assigned

based on progress made during the previous week and input from our customer. The preliminary

schedule can be seen in the table above. Todd, Riley, and Nick will work on the backend services,

including database design and providing the appropriate data abstractions for the front end team.

Geo↵rey, Roee, and Aaron comprise the front end team, working on implementing the UI elements

in our design and the interactions for each of those elements. Ryan will lead the crowdsourcing

feature and will write up the weekly status reports. Sonja will work on crowdsourcing as well, in

addition to helping out on other tasks when needed. This ensures that the PM is familiar with

the progress of the whole system. The entire team will meet twice a week, at 9:30 on Tuesdays

and Thursdays. Each subteam will arrange additional meetings to work towards completing team

tasks. We will track progress on issues through the GitHub issue tracker, and use slack for general

communication.

Test Plan

Unit Tests

• Tests that our independent modules and moving parts conform to the specifications and are

implementation agnostic. Will cover the backend data pipeline components, frontend UI

elements, and the database health and status.

• Tests will be developed by the author of the module or package. Whomever adds a new

feature or endpoint is responsible for its complete test coverage.

• We will run these tests automatically every time that a team member merges a change to the

repository using the Jenkins continuous integration system.

System Tests

• Tests that the components of the system are well integrated and perform to the specifications

and are both stable, reliable, and e�cient.

• Tests will be developed by the authors of a particular feature. Whomever adds a new com-

ponent or changes an existing one must make sure that it does not break or flaw anything in

the existing product. All changes should serve to better the product.

• We will not be using automation to test the overall system. Instead, every time a new feature

gets added or changed we will check its integration with the rest of the system as well as

overall usage anytime that we build and use the product on our own.

12



Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

Usability

• Tests that the system and product as a whole is not only functional but also usable and

intuitive to both experienced and new users.

• We will develop tests both in scripted fashion, by preparing scenarios and exercises for our

test subjects to go through, and also on the fly, as we think of new options or scenarios while

interacting with tests subjects.

• We will run these usability tests frequency, mainly while developing new features. Once a

prototype is working to a suitable and functional level, we can approach our acquaintances

(friends, professors, band members, old lovers, family members) and ask them to undergo

a full interaction with the product while we observe. The persons that get more frequent

interactions with our platform in this fashion will become our “experienced users” while new

victims will play the role of new or inexperienced users.

Adequacy of Test Strategy / Bug Tracking

We believe that while this test strategy is not perfect, and could absolutely benefit from further

tweaking and more personnel dedicated to its perfection (such as full time quality assurance engi-

neering at a tech organization), for the extremely limited duration and scope of this project, it is

adequate.

We will be using GitHub Issues for bug tracking throughout the duration of this project. It

will be available and open to the public through the following link: Github Link. Issues will be

reported using the system by whomever finds them while testing using one of the aforementioned

methods, and assigned to the team responsible for that specific part of the product. Through Slack

integrations, the team that the issue got assigned to will get sent a message to their Slack channel

with a link to the issue on GitHub. For example, if during usability testing on a friends computer

one of the team members finds a bug where the menu does not render correctly on Internet Explorer

versions pre-1998, they will file an issue assigned to the front-end team. A message will be posted

on the #frontend Slack channel alerting the members of that team to the presence of the issue on

the GitHub Issues website.

Documentation Plan

Very little external documentation will be required to enable users to understand and use CYB.

To explain its purpose, we will use our web page, as well as the application download pages on the

Google Play Store and the Apple Store. To help users to understand how to use the app, we will

develop a UI that integrates help text to unambiguously display functionality.

Code Style Guidelines

We will be using a combination of Typescript, JSON, and React, which are all JavaScript-based

languages.

TypeScript https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines

13

https://github.com/aaronnech/CheckYourBias/issues
https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines


Check Your Bias (checkyourbias@u.washington.edu) Software Design Specification

JSON https://google.github.io/styleguide/jsoncstyleguide.xml

React https://github.com/Khan/style-guides/blob/master/style/react.md

The majority of our guidelines will be enforced in our build system pipeline. As the first step in

our pipeline, we will have a tool which runs through all of the source code and checks for any

inconsistencies between the actual source code and the style guidelines. Such modules are already

available open-source, such as JSLint for Javascript and TSLint for Typescript. Should this step

of the build process generate any errors, the build will automatically fail until the developer has

corrected the errors.

In addition to enforcing style through automated tools in the build process, we will also hold

thorough code reviews for every major commit. Code reviews will be open to all team members,

allowing the opportunity for humans to catch style violations that automated tools may not catch.

14

https://google.github.io/styleguide/jsoncstyleguide.xml
https://github.com/Khan/style-guides/blob/master/style/react.md

	Interfaces Between Modules
	Facebook Login
	Firebase Vs. Parse

	Data Storage
	Design Assumptions
	Diagrams
	Sequence Diagrams
	User Voting
	Crowdsourcing

	Process
	Risk Assessment
	Project Schedule
	Team Structure

	Test Plan
	Unit Tests
	System Tests
	Usability
	Adequacy of Test Strategy / Bug Tracking
	Documentation Plan
	Code Style Guidelines


