
Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Product Description

Introduction

With the 2016 presidential race well under way, the media has had a profound effect on the public’s

perception of each candidate. As the race continues to narrow down to only a few presidential

candidates, it is becoming increasingly important that people understand the values and views

each candidate would bring as president. However, major issues exist with the political system in

the United States. One problem is that many sources for campaign news can be incredibly biased,

especially when a candidate’s campaign is being funded by the news organization. Another issue is

the lack of participation in politics, especially among young voters, in the United States. Our app,

named Check Your Bias (CYB), aims to help combat these problems.

CYB is a mobile application where users will respond to quotes, topics, and issues by using a sliding

scale to indicate if they “Agree” or “Disagree”. Some topics may include economy, gun control,

immigration, etc. The novel feature of CYB is that there is no indication of which candidate

supports or opposes the presented issue, removing the bias that the user may have had if they had

known a candidate’s position. After submitting a response, the user has the option to see where

they stand in relation to other candidates’ positions. Some users may find that their stance on an

issue falls more closely towards a candidate they had no intention in voting for.

Target Audience

CYB’s target audience is mainly anybody who is interested in American politics. It is aimed

particularly at people who are staunch Democrats and Republicans who only consume media from

the party of which they are aligned in. However, the app serves as a way for anybody to find where

their interests align with American politicians. It is also possible that CYB can be used by political

campaigns in order to get their candidates more publicity. Although not normally an issue for the

front runner, getting information out for someone falling behind on the polls can be difficult and

CYB can work with the campaigns because it aims to provide a nonbiased tool for every politician.

Problem

The two main political news sources, CNN and Fox, are heavily biased towards the Democratic

and Republican parties, respectively. It is common for people to only read news from the source

that supports their own political interests and sometimes it can be hard to realize that another

candidate from the opposing party better aligns with their viewpoint because of the propaganda

and bias that major news sources hold.

Many people are also interested in voting but find it hard to keep up with every single political

candidate and their standpoints on every issue. Even those keeping up with debates and news can

find it hard to remember the viewpoints of every politician, especially those that are not doing as

well in the race because of reduced coverage. CYB aims to consolidate all politicians equally with

their standings on major issues, and anonymizes the candidates in order to draw back on possible

bias.

1



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Related Work

There are relatively few competing political apps, and most of these are simply news apps with

a political bent. Such apps generally would present political news from a certain perspective and

users would not be exposed to information that challenges their previously-held beliefs unless they

specifically sought it out. Additionally, these sources have a major weakness shared by other news

sources: candidates rarely receive equal representation in coverage.

One political app that moves beyond simple news coverage is Brigade, which acts as a politics-

focused social media platform. This allows users to share and debate views across a wide range of

topics and find users and candidates who align closely with their stated views on issues. However,

the aim is clearly more for social discourse than to allow users to gather information, and the

lack of anonymity means it may reinforce biases rather than challenge them. In contrast, CYB

eschews user-to-user interactivity for convenience, versatility, and variety of information presented.

By anonymizing sources of opinions, CYB is able to provide users with views that they might not

encounter from a news app or political-social app where they would likely only explore areas they

consider relevant to their currently-held beliefs.

Major Features

Issue Rating

The app revolves around our major feature, the ability for users to make a decision about an

anonymized political opinion free of media bias. This feature will show users quotes, tweets, and

other text that represents a candidate’s political stance (for example, a brief summary of a bill they

have proposed). The user must then decide whether they agree with the statement on a gradient

scale from “strongly disagree” to “strongly agree.” Once the user submits their opinion, they are

shown more information, including the candidate associated with the text and links to reliable

sources to learn more about the topic. Users should never see the same text twice, and the stances

presented should represent all candidates and topics evenly.

Candidate Analysis

Once a user has “voted” on some issues presented to them, they can view an analysis of their views

and how it aligns with each of the candidates. This will be shown in the form of an interactive

graphic, i.e., clicking on graphical elements will show different information. The user should also

be able to filter by category/topic or group by political party.

Crowdsourcing

As one of the main uses (features 1 and 2) requires content, we will implement a crowdsourcing

option that allows users to submit political content that they would like to see in CYB. Users may

submit content in the form of quotes, issues, or topics that will then be sent to the backend server.

For our version 1.0 release, this content will need to be approved by the moderators (the developers

for the purpose of this class) before it will be shown to other users within the application.

2



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Political Profile

The user will also be able to navigate to a profile section of the app that displays information

and data regarding their time spent on CYB. A brief list will show a timeline of the user’s voting

history, displaying the same cards or issues that they were shown at an earlier time (with their

vote). In addition to this, in order to motivate the usage of feature 3 (crowdsourcing), all of a user’s

submitted content will be displayed here along with the number of times another user has voted

on the content. This enables people to see the direct impact that their submissions have in CYB.

Stretch Features

Automated Crowdsourcing

Not requiring a someone on the CYB team to manually approve crowdsourced content would create

a far greater volume of content on the platform. To accomplish this, we could check if identical

content has been submitted by multiple users before displaying it. Additionally, we could have an

option to vote on whether a topic is correct/good, which could filter out any bad content that we

accepted.

Generalize for Non-Presidential Elections

An issue CYB aims to combat is the lack of participation in non-presidential elections. An example

is the 2014 midterm elections, which had a national turnout of 36.3% of registered voters - a 72-year

low. For an election that determines all 435 seats in the House of Representatives and a third of

the 100 seats in the Senate, electing candidates whose thoughts and opinions actually represent

that of their respective majorities is crucial. However, the media rarely focuses on elections such

as these, and many people are left in the dark. With this feature, users could discover who aligns

most with their political views without taking the effort to read into every candidate. Whether

an election determines the city council, governor, or congress, users would be just a few curated

questions away from getting a good idea how to cast their vote. This is a stretch goal because it is

dependent on having a high quality implementation of the automated crowdsourcing platform.

Non-functional Requirements

Trust

CYB needs to be a platform that people trust. Considering how rife mainstream media is with

reports of lies spread by candidates, the public has become suspicious of not only the candidates

themselves but also of the news sources reporting on the elections. In order to get our clients to

give CYB a try and use the platform, the trust in the platform must be established. Every facet

in the end product must be taken into account when considering the level of trust that the user

will place in the app. Both the product’s appearance and core functionality (must look appealing

and avoid crashing, have a user-interface consistent with the experience the user expects) and the

content in the product will be weighed by the end user.

3



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Quality & Quantity of Information

Since there are many sources of information that are competing for the user’s attention during

election season, the quality and quantity of the content on our product must be satisfactory and

of equal or higher quality than our competitor’s. This would encourage users to come to CYB for

information and help build trust.

This goes along with the rest of the requirements outlined above. Since it is crucial, in order for

CYB to succeed, for content in the product to be plentiful, of high quality, and trustworthy, we

must make sure that the product as a whole does not hold a sway to any particular side in the

political debate. Existing and new content to the product must be screened carefully in order to

maintain non-partisanship in the content that the product presents. This will in turn further assist

in contributing to the requirements desired.

External Documentation

Very little external documentation will be required to enable users to understand and use CYB.

To explain its purpose, we will use our web page, as well as the application download pages on the

Google Play Store and the Apple Store. To help users to understand how to use the app, we will

develop a UI that integrates help text to unambiguously display functionality.

Process Description

The system will primarily be composed of a database and a mobile client. We will use React to

build the mobile client. React is a web component framework which allows us to define our client

application as a interacting tree of reusable components. Once the client is built and tested in the

browser we can deploy it to the mobile platform via Apache Cordova (formerly known as Phone-

gap). Cordova places the browser application inside a thin native platform wrapper for both iOS

and Android. If time allows, we may explore React Native which bypasses the need for phonegap

by producing an entirely native application.

For the database, we elect using Parse to store and interact with information regarding political

candidates. If time allows and we expand our mobile client to gathering crowd sourced data, we

can leverage the Parse event hook framework to live update the information for all clients. Using

Parse removes the need to write a traditional server and authentication routines by giving us the

ability to script such functionality into the database system itself.

Finally, for building and testing we will employ Gulp, Node Package Manager (NPM), and NodeU-

nit. Gulp is a streaming based build system which takes as input a stream of files to be processed

by the build. In our project, we will be streaming TypeScript and JavaScript React classes into the

build system which will then compile to vanilla JavaScript. The JavaScript will then be streamed

to a compressor and minified into a single built file. For dependency management, we will use the

popular package manager, Node Package Manager (NPM), which allows any team member to run

a single command to obtain all the dependencies listed in this section. To test our TypeScript and

4



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

React modules in isolation we will use NodeUnit which provides a simple framework for writing

asynchronous compatible unit tests.

Versioning System & Issue Tracking

We have a GitHub repository located at https://github.com/aaronnech/CheckYourBias. This is a

public repository, and each of us is given contributor access to the repository allowing us to clone,

branch, and merge directly into the repository. Because of our privileges as contributors, none of us

will need to fork the repository. Additionally, we have integrated repository notifications into Slack,

our application of choice for instant team communication. Whenever a commit is pushed upstream,

or an issue is created, or a pull request is accepted, an automated bot will send a message to all

users on Slack notifying them of the change. We will track all issues through GitHubs integrated

issue tracker, located within the Github Repo. Issues will be organized by certain labels, such as

“bugfix”, “enhancement”, or “feature”.

Group Dynamics

We have chosen Sonja to act as the Project Manager (PM). Development will be driven by the

SCRUM methodology with short one-week sprints, because this aligns with our customer meetings

and the required weekly status reports. Tasks will be assigned based on progress made during

the previous week and input from our customer. Todd, Riley, and Nick will work on the backend

services, including database design and providing the appropriate data abstractions for the front

end team. Geoffrey, Roee, and Aaron comprise the front end team, working on implementing the UI

elements in our design and the interactions for each of those elements. Sonja will serve as a full stack

engineer, helping out where needed and making sure the back end and front end are well integrated.

This ensures that the PM is familiar with the progress of the whole system. Ryan will lead the

crowdsourcing feature. Teams were chosen based on individual preference. Although specific roles

have been assigned, we will allow a member to switch tasks – under reasonable conditions – if they

are unsatisfied in their current position. Each team is responsible for writing tests for their code.

Disagreements will be settled democratically during our weekly team meetings or on the #general

Slack channel if urgent.

Timeline

After the design specification is completed as a group, the front end team, consisting of Geoffrey,

Roee, and Aaron, will develop the user-facing aspects of the issue selection and candidate analysis

features. Rudimentary versions of these UIs should be completed by the zero-feature release, while

complete versions should be available by the beta release. Meanwhile, the back end team, consisting

of Todd, Riley, and Nick, will work on the back end of these same features, including a database of

issues and a database of user history, as well as the connections between these databases and the

front end elements, which should as well be completed for the beta release. Both teams will then

move to the issues of crowdsourcing and user profiles, the corresponding aspects of which should

be completed by the feature-complete release. From this point, teams may work on an advanced

crowdsourcing system and potentially the ability to expand to general elections if time permits.

5

https://github.com/aaronnech/CheckYourBias


Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

January 29th • Software Design Specification Complete

February 2nd •

Zero-Feature Release Check-in

• Basic UI framework complete for issue selection/rating

• Basic UI framework complete for candidate analysis

February 16th •

Beta Check-in and Start of Integration Testing

• Backend for issue selection/rating complete

– Pre-built database of issues and links to sources and info

– User-based history of responses by issue

• Integration of candidate analysis UI with user history

February 23rd •

Feature-Complete Release Check-in and Integration Testing

• Crowdsourcing of ‘issues’ complete

– UI to allow users to submit issues

– Backend to process and filter submitted issues

• User profiles complete

– Integration with voting history and issue submission databases

– UI to view user profiles

March 1st •
Final Release Check-in and Start of Final Testing Phase

• Stretch features implemented if time permits

March 8th • Final Release

Risk Summary

1. Content

Likelihood: Medium

Impact: High

Summary / Evidence: Content is a major component of Check Your Bias and it is in-

credibly important that this information be both accurate and complete. The content will be

directly related to the overall quality of our application.

Overall Plan: We plan to review all content that is put into our app as a team in the

beginning. That means that before content can show up in the feed for users, it has to be

approved by admins who will check the accuracy and completeness.

Detection: This was discussed about, but all content will be moderated before it can show

up in a user’s feed.

Mitigation Plan: Should this occur, users can report something as incorrect with a few

simple taps when voting on a topic or issue.

2. Crowdsourcing

Likelihood: Medium

6



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Impact: Medium

Summary / Evidence: Crowdsourcing will allow the product to grow significantly and

provide a platform for many people to share their knowledge and expertise in the topic, but

it also produces significant challenges. Content that users supply to the app must be vetted

and screened thoroughly and pass quality guidelines. It will be difficult balancing the effort

and efficiency of undergoing this screening process.

Overall Plan: All content must be initially reviewed by moderators, but in order for this to

scale there must exist a limit to how much one can spend on a single topic before making a

decision.

Detection: Moderators will need to be careful that the time spent approving or disapproving

content is of high quality so that a short amount of time can be spent on each submission

while also insuring that only high quality content is approved.

Mitigation Plan: Should this fail to happen, then users will be able to flag content for

review (as discussed in the previous risk).

3. Content Creation

Likelihood: Medium

Impact: Medium

Summary / Evidence: A major feature of our end product is providing users the option to

answer a set of questions that will help the product guide them towards a candidate whose

opinions match their own. Since this process and criteria will at first be created manually by

us, the creators of the products, there is a risk that our bias or incomplete understanding of

the political situation will impact the quality of this initial survey and will thus degrade the

overall quality of the product.

Overall Plan: In addition to all content being approved by a set of moderators, each moder-

ator should carefully consider whether the submission is inherently bias towards a particular

candidate or viewpoint.

Detection: Detection can happen in 2 places: another moderator will catch it before it is

approved or a user will flag the content.

Mitigation Plan: If a moderator finds content to be inherently biased, then they may edit

the content to be better suited for the content feed.

4. Lack of Engagement

Likelihood: Low

Impact: High

Summary / Evidence: A user may come into our app and only answer a few questions and

then stopping. This does not give us enough evidence to make any conclusions about who

the user most closely relates to in terms of the candidates.

Overall Plan: We will display a message saying that there is not enough information yet to

make any conclusions about the user’s political views if the user tries to access the analysis

page.

Detection: This can be detected if the user tries to access his or her political profile page

before they have ranked enough topics or issues.

Mitigation Plan: The main way of mitigating this risk is to tell the user they must answer

X questions or topics before we have enough information to make a conclusion about their

7



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

political profile. If a user has already taken the time and effort to download our application,

then it is likely that asking them to spend a few more minutes rating topics will not deter

them away from CYB. Unfortunately, it would be incredibly difficult to make any conclusions

based on such little data.

5. Rated Content

Likelihood: Medium

Impact: Medium

Summary / Evidence: As a user rates content in his or her feed, it is likely that they

will encounter a category that is of not much importance to them. For example, if I have an

extreme bias against Trump and disagree on every single one of his viewpoints – then it is

highly unlikely for me to have my views changed (the main idea of CYB is to help educate

voters about their views and how they relate to the candidates’ views). If I rate a quote of

Trump’s that happens to be one of his main campaign points as “Highly Disagree”, then I

probably won’t agree with many of his other points.

Overall Plan: This can be mitigated by using a user’s vote on a topic as an indicator whether

he or she agrees with a candidate before the user’s political profile is made. The server can

then send topics to the user that help complete the profile rather than sending more topics

on someone or something that they do not care for.

Detection: Detection of this risk is a difficult task. We can look at the likelihood of a user

voting “Highly Disagree” on a topic given that they also voted “Highly Disagree” on this

other topic and use this as a metric in determining whether or not to show them.

Mitigation Plan: Largely discussed above, we want to show users topics that help complete

our political profile of them. This means that we should have a diverse set of content that

can be utilized to help find the right topics to present to the user.

8



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Use Cases
Knowing Who To Support In The Election

Goal A user wants to know what is being said by politicians, and how much he or

she agrees with them

Primary

Actor

A college student who barely follows politics

Scope Check Your Bias (CYB) app

Level User

Precondition User knows about the CYB app from primary or secondary sources.

Success end

condition

User has decided how much they agree or disagree with at least one statement

Failure end

condition

User has not decided how much they agree or disagree with at least one state-

ment

Trigger User opens the application, possibly for the first time

Main success

scenario

1. User logs into their account or registers for a new account

2. Application displays a quote said by a politician. This quote does not

include attribution

3. User indicates to the application his or her level of agreement with the

quote

4. The application reveals the attribution of the quote to the user

5. Steps 2-4 can be repeated as desired

Extensions

1. User logs out or quites the app before indicating their level of

agreement with the quote

(a) On the user’s next login, the application displays the same quote

to the user, without attribution

(b) Repeat step 1a until Step 3 in Main success scenario is satisfied

Variations

1. User can choose to skip the quote

(a) The application reveals the attribution of the current quote

(b) The application reveals a new quote to the user. See Step 2

(c) Steps 1a-b are repeated until the user does not skip the quote

2. User can choose to indicate “undecided”

(a) The application continues as usual

9



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Knowing Where You Stand, And With Whom You Stand

Goal A user wants to know where they stand on various political issues, and the set

of candidates who have similar views

Primary

Actor

An adult who is passively interested in politics

Scope Check Your Bias (CYB) app

Level User

Precondition User has repeated the steps in Main success scenario of the first use case

enough times to be familiar with that use case of the application

Success end

condition

User knows where they stand on various political issues, and/or User knows

the names of the candidates who have similar views

Failure end

condition

User is unable to know where they stand on various political issues, or User

does not know the names of the candidates who have similar views

Trigger Various external; e.g. election date approaching, watched televised debate

Continued on next page...

10



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Main success

scenario

1. User opens the application

2. User goes to the Analysis view of the application

3. User filters results by topic. Example: immigration

4. Application displays a graph of how similar the user’s immigration

views are to each candidate

5. (Optional) User clicks on a candidate to retrieve a quick summary of

that candidate’s views on immigration

6. User can repeat Steps 2-6 as desired

Extensions

1. No candidate shares similar views to the user on a given topic

(a) The application still displays applicable candidates for that topic

(b) (Optional) User clicks on a candidate to retrieve a quick

summary of that candidate’s views on the given topic

(c) Steps 1a-b are repeated until the user does not skip the quote

2. No candidates have any quotes registered in the application that

pertain to the selected topic

(a) Application displays to the user a friendly message indicating that

no candidates have been found for the selected topic

(b) (Optional) User taps a Back button to go back to the Analysis

view of the application

3. The user has not indicated enough their level of agreement with quotes

relating to a particular topic. As a result, the application cannot

display candidates whose views on such topic match those of the user

(a) Such topic will not be made available to the user

Variations None

11



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Adding Content To The Application

Goal Introduce statements made by a candidate not previously registered in the

application database

Primary

Actor

A campaign volunteer

Scope Check Your Bias (CYB) app

Level Contributor; user

Precondition The campaign volunteer has created their account

Success end

condition

The content is created and saved in the application database

Failure end

condition

The content is not created, or is not saved in the application database

Trigger User wants to let other CYB users know more about a candidate.

Continued on next page...

12



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Main success

scenario

1. User logs into the app

2. User goes to the Content Creation page

3. User enters content related to the candidate they support; e.g. a

summary of a bill that said candidate has passed

4. User chooses a category and enters a link to a reliable source

elaborating on their topic

5. User taps the Submit Content control on application

6. The application approves the user’s submission. Note that significant

time may pass between Steps 4 and 5

Extensions

1. User has not yet created an account

(a) User goes to registration page

(b) User completes registration

(c) User continues with Step 2

2. Application rejects the user’s submission, for any reason

(a) Application notifies user of the rejection with the reason

(b) Application presents user with two choices:

i. Edit and Resubmit

A. User chooses this option
B. User is presented with screen to edit their content
C. User taps the Resubmit Content control on application
D. Return to 2

ii. Delete

A. User chooses this option
B. User is presented with confirmation
C. If user taps yes, application deletes the content
D. If user taps no, proceed to 2a

3. User fails to enter the required information

(a) Application prevents user from completing Step 5 until user has

successfully completed 3a. and 4a.

Variations

1. User does not want to submit content, but save it as “Draft” status

(a) Application informs user that their content has been saved as draft

(b) On subsequent logins, user is able to retrieve their saved drafts

2. User wants to start over with their submission

(a) User presses a “Reset” button

(b) Application presents the user with a confirmation dialog, asking

if the user really wants to start over

(c) If user selects yes, all content the user has entered is deleted

(d) If user selects no, application closes confirmation dialog box and

user can resume creating their submission.

13



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

UI Diagrams

A (left) Rate Viewpoints. The user is presented with various viewpoints on issues within context

of topics such as economics or gun rights. The user then rates each their alignment with the

opinion on a continuous scale from negative to positive. The user can then swipe to the next

viewpoint.

B (right) The user can see the culmination of all their ratings from the Rate Viewpoints flow in

a topical feed, along with various visualizations for how they align politically. They can also

explore the origin of each viewpoint they have aligned to.

14



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

C (left) Your Candidates. The user can view a list of candidates which most closely align with

their political profile on various topics. Candidates are ranked in a scrollable list.

D (right) Submit Issue: The user can submit a quote or issue that may be added as a prompt in

Rate Viewpoints (A). They submit a title, description of the issue along with the candidate

who has previously endorsed the viewpoint. It will be added either through positive user

ratings based on previous submissions or by a member of the CYB team manually approving

it.

15



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Design Changes and Rationale (2/19)

Major Features

We did not make any changes to our major feature requirements and have most of the functionality

described about them in this document implemented for the beta release.

Parse

Fairly on in the project, it was announced that Facebook was discontinuing support for Parse at

the end of 2016. It was decided as a group that we should move away from Parse in order to

develop skills that are relevant well after this class ends. As a team, we decided that we should

move our implementation over to Firebase, which acts very similar to Parse but will (hopefully)

not be discontinued in the near future.

Timeline

While our timeline has mostly stayed the same as we have met all of our deadlines that we set

as a team, we have fallen slightly behind on the integration of different systems. Specifically,

the candidate analysis integration, which should of been completed by February 16th, will not be

completed until our Beta release. This will postpone some of the testing that needs to take place

in the application by a few days to a week depending on the severity of the delay. This should not

have any effect on our beta release or our feature complete release during the following week.

User Interface

We made some major changes to the overall design of the UI. Notably, we changed the layout and

number of fields in the crowdsourcing view.

16



Check Your Bias (checkyourbias@u.washington.edu) Software Requirements Specification

Design Changes and Rationale (2/26)

iOS Support

After much effort, we have decided to drop iOS support on this project. In the beginning we chose

to use a library called PhoneGap in order to port our web application to both Android and iOS.

Unfortunately, we have had to drop support for iOS because some of the main functionality of the

app does not work on iOS. Instead of spend engineering hours on debugging and fixing the issue, we

have decided to focus our efforts on making the application better / implementing stretch features.

17



Updated Product Schedule: 
(days to complete in parenthesis next to each task) 

Class Due Dates 
(Week of) 

Front End Team  Back End Team  Crowdsourcing Team 

1/26 
● Submit Software 

Design 
Specification (2/1) 

● Submit slides for 
SDS (2/2) 

Familiarity with 
React and Gulp build 
system. Learn 
Material­UI for 
building React 
components. 
 
Aaron: Fill team in 
on development 
stack and architect 
major modules. (2) 

Explore Firebase 
 
UML Diagram 
 
Nick, Todd: Learned 
about Parse and 
Firebase to 
determine the pros 
and cons of each(4) 

Sequence Diagrams 
 
Sonja: Sequence 
Diagram for user 
voting (2) 
 
Ryan: Sequence 
Diagram for 
crowdsourcing. 
Wrote up docs in 
Latex and made final 
changes (2) 

2/2 
● Submit 

zero­feature 
release (2/8) 

Team: A React 
component for each 
major feature 
 
Aaron: Set up major 
application 
scaffolding and build 
infrastructure to 
support React front 
end. Continuous 
testing bot (3) 
 
Geoffrey: Implement 
“Rate Viewpoints” 
component screen 
(1). Implement “Your 
Candidates” screen 
(1). Various UI 
touch­ups (3). Work 
on a slider for voting 
(later deprecated) 
(2). 
 
Roee: implement the 
Political Profile page. 
Design the cards 
that will hold the 
information 

Write typescript 
classes 
 
Riley: Preliminary 
implementation of 
User class (1) 
 
Nick: Preliminary 
implementation of 
User and Candidate 
class (1) 
 
Todd: Preliminary 
implementation of 
Issue, Category 
classes (1) 

Sonja: Built 
crowdsourcing 
content submission 
form (3) 
 
Ryan: Designed and 
implemented the 
product website to 
showcase our work 
to users and 
developers. Updated 
docs to reflect the 
changes that we 
made up until this 
time (3) 



displayed on the 
page and pick the 
appropriate Material 
UI elements for the 
task (3) 
 
 

2/9  Implement 
interaction for most 
components. 
 
Geoffrey: Document 
components (1). 
Mock up voting and 
getting new issues 
(2­3). 
 
Roee: Adding 
filtering to the 
political profile page 
via constants hard 
coded into the app 
(4) 

Test the backend 
thoroughly and 
ensure smooth 
integration with 
frontend 
 
Riley: Implement 
User methods, most 
significantly the 
method to get a new 
issue for a user such 
that candidates are 
equally represented 
(3) 
 
Nick: Implement User 
methods, tweaking 
the method to get a 
new issue for a 
method previously 
written by Riley and 
writing half of the 
ranking method. (3) 
 
Todd: Implement 
Candidate, Category, 
Issue methods (2) 

Sonja: Worked on the 
crowdsourcing 
approval component, 
including a 5 point 
selector that was 
used in the rate 
viewpoints 
component. (2) 
 
Ryan: Make 
crowdsourcing 
submission write to 
Firebase. Wrote code 
to surface data from 
subcomponents to 
the parent 
component. (2) 

2/16 
● Submit beta 

release (2/19) 
 

Implement Political 
Profile 
 
Add candidate 
avatars 
 
Improve Your 
Candidates 
 
Geoff: Sync Rate 
Viewpoints with 

Improve utility and 
integration of 
backend classes 
 
Riley: Add features to 
account for approval 
of issues (2), create 
utility methods for 
categories and 
candidates (getAll 
and conversion 

Sonja: Normalized 
styling with rest of 
app, migrated 
crowdsourcing to 
work with Categories 
and Candidates 
pulled from Firebase 
instead of hardcoded 
data. (2) 
 
Ryan: Added a check 



backend, allowing 
displaying of issues 
and voting (2). Fixes 
and improvements 
for UI issues on Rate 
Viewpoints (2). Work 
with backend on 
issues with User 
class (3­4). Moving 
from mock data to 
real data pulled from 
database in “Your 
Candidates” screen 
(2­3). Work with 
Aaron on getting 
webdriver tests set 
up (1). 
 
Aaron: Set up 
webdriver testing 
framework, integrate 
with gulp build 
system. Setup stand 
alone selenium 
runtime. Multiple bug 
fixes with integration 
of Model classes 
with React frontend 
such as category 
fetching for issue 
submission. (2) 
 
Roee: adding 
candidate avatars to 
Political Profile page. 
Connecting the 
political profile page 
to DB category and 
candidate data (2) 

between ids and 
names) (2) 
 
Nick: Updated tests 
for User methods and 
worked on utility 
methods for 
categories and 
candidates. (1 each) 
 
Todd: Changed 
return structure of 
getRankings to make 
it not depend on 
array indices for 
candidate ids (2). 
Wrote corresponding 
tests. 

for valid URLs in the 
crowdsourcing form, 
updated the UI for 
required fields to be 
less intrusive by 
using red underlines 
rather than text. (2) 
 
Aaron: Categories 
and candidates pull 
from firebase instead 
of being hardcoded 
constants. (1) 

2/23 
● Submit feature 

complete release 
(2/26) 

 

Option to skip issues 
when voting 
 
Show how similar a 
candidate is to the 
user 
 

Improve ranking 
algorithm, continue 
supporting frontend 
team with additional 
features 
 
Riley: Implement 

Sonja: Added ability 
to add multiple 
sources and 
candidates to the 
crowdsourcing form. 
Made the news 
source URLs 



Geoffrey: Implement 
showing candidate 
information after 
voting on an issue 
(5). Worked with 
backend team to 
retrieve issues 
independent of 
category (2). 
Implement skipping 
issues (and bugfixes 
for that), with 
collaboration on 
backend team (6). 
Reworking backend 
to retrieve 
candidates’ avatars 
(3). Begin work on 
showing additional 
candidate ranking 
data in “Your 
Candidates” (3). 
Begin attempting to 
display categories in 
sorted order in “Your 
Candidates” (2­3). 
 
Roee: providing 
Candidate avatars to 
all app pages. 
Currently attributing 
quotes on Political 
Profile page (2) 
 
Aaron: Extensions to 
webdriver testing 
framework and 
authentication 
infrastructure to 
allow testuser login 
to access and vote 
on production data, 
while cleaning up 
temporary data. (2) 

improved ranking 
algorithm (1), 
improved tests (2), fix 
errors in User 
method edge cases 
(2), normalize 
ranking results to 
more grokkable 
values (1), add ability 
to get next issue from 
any category (1) 
 
Nick: Continued to 
support the front­end 
team in integrating 
the back­end and 
front­end code. Also 
worked on 
streamlining some 
back­end code that 
wasn’t necessary for 
use with Firebase. (5) 
 
Todd: Added more 
utilities 
(getAllCandidatesSor
ted, 
getAllCategoriesSort
ed) (2). Changed the 
structure of data 
returned to resolve 
front­end issues (1). 

clickable in 
RateViewpoints (2) 
 
Ryan: Added module 
to determine if the 
user has an internet 
connection in order to 
show the correct 
error in the 
crowdsourcing form. 
Updated SRS and 
SDS docs (2).  
 
 

3/1 
● Submit release 

Webdriver Tests 
 

Fix inconsistencies in 
data representation 

Sonja: Conducted a 
user study. Fleshed 



candidate (3/4) 
 

Geoffrey: Finish 
work on showing 
additional candidate 
ranking data in “Your 
Candidates” (2). 
Show profile pictures 
of candidates in 
“Your Candidates” 
(2). Finish work on 
displaying categories 
in sorted order in 
“Your Candidates” 
(3). Complete code 
review for Roee (1). 
Various 
infrastructure 
changes (2). 
 
Roee: Fix bugs in 
your Political Profile 
page that arose as a 
result of switching to 
a purely DB­pulling 
for info and getting 
rid of the hard­coded 
issues (3) 
 
Aaron: Wrote 
another webdriver 
test featuring issue 
voting. (1) 

 
Riley: Add author 
field to issues to 
make handling of 
direct quotes more 
convenient (1) 
 
Nick: Added 
back­end 
functionality to skip 
issues and filtered 
content for approving 
issues so that 
submitters are unable 
to approve their own 
submissions. (3) 

out the Group 
Retrospective 
document. (1) 
 
Ryan: Conducted a 
user study. Wrote the 
user study doc and 
analysis. Added 
features to improve 
the crowdsourcing 
experience. (3) 
 
Aaron: Conducted 2 
user studies (1) 

3/8 
● Submit final 

release (3/8) 
 

Individual 
Retrospective 

Individual 
Retrospective 

Individual 
Retrospective 

 


	Issue Rating
	Candidate Analysis
	Crowdsourcing
	Political Profile
	Automated Crowdsourcing
	Generalize for Non-Presidential Elections
	Trust
	Quality & Quantity of Information
	External Documentation
	Versioning System & Issue Tracking
	Group Dynamics
	Timeline
	Risk Summary
	Use Cases
	Knowing Who To Support In The Election
	Knowing Where You Stand, And With Whom You Stand
	Adding Content To The Application

	UI Diagrams
	Design Changes and Rationale (2/19)
	Major Features
	Parse
	Timeline
	User Interface


	Design Changes and Rationale (2/26)
	iOS Support


